Telegram Group & Telegram Channel
Какие нелинейные преобразования данных вы знаете?

Нелинейные преобразования меняют структуру распределения. Это помогает улучшить модели, делая их способными улавливать сложные зависимости в данных.

Вот некоторые из наиболее распространённых нелинейных преобразований:
▪️Логарифмическое преобразование.
Оно позволяет увеличить расстояние между небольшими значениями и уменьшить между большими значениями. Преобразование делает скошенное распределение более симметричным и приближённым к нормальному.
▪️Преобразование с помощью квадратного корня.
Действует аналогично логарифмическому, однако менее агрессивно. Его без изменений можно применять к нулевым значениям.
▪️Преобразование Бокса-Кокса.
Обычно используется для трансформации зависимой переменной в случае, если у нас есть ненормальное распределение ошибок и/или нелинейность взаимосвязи, а также в случае гетероскедастичности.
▪️Преобразование Йео-Джонсона.
Позволяет работать с нулевыми и отрицательными значениями.

#машинное_обучение
#статистика



tg-me.com/ds_interview_lib/312
Create:
Last Update:

Какие нелинейные преобразования данных вы знаете?

Нелинейные преобразования меняют структуру распределения. Это помогает улучшить модели, делая их способными улавливать сложные зависимости в данных.

Вот некоторые из наиболее распространённых нелинейных преобразований:
▪️Логарифмическое преобразование.
Оно позволяет увеличить расстояние между небольшими значениями и уменьшить между большими значениями. Преобразование делает скошенное распределение более симметричным и приближённым к нормальному.
▪️Преобразование с помощью квадратного корня.
Действует аналогично логарифмическому, однако менее агрессивно. Его без изменений можно применять к нулевым значениям.
▪️Преобразование Бокса-Кокса.
Обычно используется для трансформации зависимой переменной в случае, если у нас есть ненормальное распределение ошибок и/или нелинейность взаимосвязи, а также в случае гетероскедастичности.
▪️Преобразование Йео-Джонсона.
Позволяет работать с нулевыми и отрицательными значениями.

#машинное_обучение
#статистика

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/312

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Библиотека собеса по Data Science | вопросы с собеседований from ye


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA